Glucose increases the expression of the ATP/ADP translocator and the glyceraldehyde-3-phosphate dehydrogenase genes in Chlorella.
نویسندگان
چکیده
A presumably full-length cDNA clone of the mitochondrial ATP/ADP translocator (AAT) of Chlorella kessleri has been isolated and sequenced. The expression of the AAT gene is highly increased in the presence of D-glucose (14 mM). At least nine more genes are activated when autotrophically grown Chlorella cells switch to heterotrophic growth. Among these is the HUP1 gene coding for the hexose transporter (Sauer, N., Caspari, T., Klebl, F., and Tanner, W. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7949-7952) and, as also shown in this paper, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. When glucose or the nonmetabolizable analogue 6-deoxyglucose is added to the cells, an increased expression of GAPDH or AAT is observed after 10 or 30 min, respectively. Hexose uptake mutants (HUP1-) do not respond to sugars in this way, which indicates that either the inducer has to be internalized or that the HUP1 translocator is part of the signal transduction mechanism.
منابع مشابه
Regulation of glucose metabolism by adenine nucleotides in round spermatids from rat testes.
Regulation of glucose metabolism in glycolysis by round spermatids was studied. Assay of activities of 11 glycolytic enzymes in cell-free spermatid extracts showed that hexokinase, phosphofructokinase, and glyceraldehyde-3-phosphate dehydrogenase had the lowest activities. When the cells were incubated with glucose (10 mM), the intracellular level of ATP fell rapidly and 5'-AMP increased. The A...
متن کاملNAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties.
The hyperthermophilic archaeum Thermoproteus tenax possesses two glyceraldehyde-3-phosphate dehydrogenases differing in cosubstrate specificity and phosphate dependence of the catalyzed reaction. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase catalyzes the phosphate-independent irreversible oxidation of D-glyceraldehyde 3-phosphate to 3-phosphoglycerate. The coding gene was cloned, seq...
متن کاملIdentification of Reference Genes for Quantitative Expression Analysis of MicroRNAs and mRNAs in Barley under Various Stress Conditions
For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs)would be stably expressed in different barley varieties and under different experimental treatments,in different tissues a...
متن کاملGalectin 1 and Superoxide Dismutase are Involved in Wound Healing by Larval Therapy
Galectin-1 and superoxide dismutase are two known molecules in the wound healing process that induce such healing by different mechanisms in the wound site. Larval therapy is one of the methods use by Lucilia sericata fly larvae, nowadays returned to the list of therapeutic methods despite chronic diabetic ulcers and antibiotic resistance of bacteria. In this study, we aimed to evaluat...
متن کاملDifferential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes.
Utilizing yeast strains containing insertion mutations in each of the three glyceraldehyde-3-phosphate dehydrogenase structural genes, the level of expression of each gene was determined in logarithmically growing cells. The contribution of the TDH1, TDH2, and TDH3 gene products to the total glyceraldehyde-3-phosphate dehydrogenase activity in wild type cells is 10-15, 25-30, and 50-60%, respec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 266 35 شماره
صفحات -
تاریخ انتشار 1991